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Abstract - In the last decade, with availability of large
datasets and more computing power, machine learning
systems have achieved (super)human performance in a wide
variety of tasks. Examples of this rapid development can be
seen in image recognition, speech analysis, strategic game
planning and many more. The problem with many state-of-
the-art models is a lack of transparency and interpretability.
The lack of thereof is a major drawback in many
applications, e.g. healthcare and finance, where rationale for
model's decision is a requirement for trust. In the light of
these issues, explainable artificial intelligence (XAI) has
become an area of interest in research community. This
paper summarizes recent developments in XAI in
supervised learning, starts a discussion on its connection
with artificial general intelligence, and gives proposals for
further research directions.
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1. INTRODUCTION

In the last decade, especially since 2012, artificial
intelligence (Al) and machine learning (ML) systems have
achieved (super)human performance in many tasks that
were previously thought to be computationally
unattainable [1]. Advances in the field were achieved due
to the rise of available information, and major hardware
improvements combined with new  optimization
algorithms. We can also attribute these advancements to
high-quality open-source libraries which allowed
developers and researchers to quickly code and test
models. Improvements in speech recognition, image
classification, object detection, classical (board) games,
Texas Hol’em, and many more have led to their
proliferation and percolation to the real-world applications
outside research labs, mostly in the area of supervised
learning.

We also saw advances in application critical areas, e.g.
medicine, finance, self-driving cars, government,
bioinformatics,  churn  prediction and  content
recommendation but these applications also brought
attention to the crucial trust-related problems. Future
applications will, in addition to extensions in
aforementioned areas, also include cognitive assistance,
interpretable science and reliable ML [2], [3] The all-
pervasive utilization of these systems will significantly
transform the social landscape of the world. These
changes include many ethical challenges to which society
will have to adapt fast in order to steer the developments
to the favorable directions and outcomes. Automation will
significantly change the job market [2], which may lead to

more unfair wealth distribution. Content recommendation
[4] and generation of fake content [5] coupled with other
technologies will deeply impact the social dynamics [6].
Many things will be prescribed by such algorithms and
that will affect human lives in ways maybe now
unimagined so people will need to trust them in order to
accept those prescriptions. Systems must, like humans,
satisfy many criteria (assurances) in order to boost trust
[2]: unbiasedness (fairness), reliability, safety, explanatory
justifiability, privacy, usability etc. Among humans such
assurances are assumed due to bias towards human
decision making, since people are social creatures
accustomed to life in human communities. Artificial
intelligence, due to its novel status in our lives, as well as
being of the human making, causes much skepticism -
rightfully so. Deep learning, as one of the most successful
machine learning approaches in supervised learning has
been criticized in [7] for working well as approximations
where answers often not to be fully trusted, pointing out to
model vulnerabilities in language and vision models.
Spoofability and biasedness have been demonstrated for
visual recognition in [8], [9] and natural language
processing [10], [11]. No robust solution has been found
to these problems so far. The potential ethical pitfalls
should be addressed as soon as possible since inactivity
could lead to unforeseeable splits and differences in the
future society. European Union introduced a right to
explanation in General Data Protection Regulation
(GDPR) [12] as an attempt to remedy the potential
problems with the rising importance of algorithms. Since
the aforementioned trust criteria are hard to formalize and
quantify, usually criteria of interpretability and
explainability are used as intermediate goals. Afterwards
in the following stage, system’s explanations can be
checked if they satisfy other desirable trust criteria.

More generally, abstracted explanations can be utilized
for finding useful properties and generating hypotheses
about data-generating processes, such as causal
relationships — which is crucial application in science as
well as in future Artificial General Intelligence (AGI).
Generated hypotheses can be basis for further automated
or manual experimentation, knowledge discovery, and
optimization. This view is supported by [13] and
encompasses: checking for satisfaction of trust-criteria,
optimization of ethical outcomes due to technology,
assisted(automated) scientific discovery, transferring
skills, etc. mentioned in[3], [14]-[16]. Previous
overviews and surveys of interpretability in machine
learning are given in [2], [3], [14], [15], [L7]-[19].



In this paper we survey the advances in the
interpretability and explainability of machine learning
models under the supervised learning paradigm. Much of
the recent work is in the area of deep learning, due to
remarkable performance gains of these models on the one
hand and intrinsic opaqueness on other hand. The paper is
organized as follows: in section 2 we deal with the
preliminaries and definitions. In section 3 we categorize
the work in methods for interpretability. Section 4 offers
discussion into the current state of the research field and
lists future research ideas. Section 5 concludes the paper

II. PRELIMINARIES AND DEFINITIONS

In this section we offer definitions of: trust,
interpretability, comprehensibility, and explainability.

Trust is defined in [2] as a psychological state in
which an agent willingly and securely becomes
vulnerable, or depends on, a trustee, having taken into
consideration the characteristics of the trustee.

Authors in [15] claim that unlike normal ML objective
functions, it is hard to formalize the definitions of criteria
that are crucial for trust and acceptance, view backed by
21, [3]- In those cases of incomplete problem
formalization, interpretability is used as a fallback or
proxy for other criteria.

However, there is no wunique definition of
interpretability [3], [15]. In [3] interpretability is found not
to be a monolithic concept, but in fact it reflects several
distinct ideas and that in many papers interpretability is
proclaimed axiomatically. Authors in [15] define that to
interpret means to explain or to present in understandable
terms. Then, interpretability in the context of ML systems
is the ability to explain or to present in understandable
terms to humans.

Interpretability and explainability are often used
interchangeably in literature, but some papers make
distinction. In [17] interpretation is the mapping of
abstract concept into a domain humans can make sense of,
while explanation is the collection of features of
interpretable domain that have contributed for a given
example to produce a decision. Edwards and Veale in
[20] split explanations into model-centric and subject-
centric, notions which correspond to definitions of
interpretability and explainability from [17]. Similar roles
in [15] take up global and local interpretability,
respectively. In that view, we can see that GDPR covers
only explainability. Comprehensibility [14] is used in a
literature as a synonym for interpretability. Transparency
[3] is used as a synonym for model interpretability, that is
some sense of understanding the working logic of the
model.

None of the aforementioned definitions is specific or
restrictive enough to enable formalization. They implicitly
depend on user’s expertise, preferences and other
contextual variables.

III.  METHODS FOR INTERPRETABILITY AND
EXPLAINABILITY

There are two categories of approaches to
interpretability and explainability: integrated
(transparency-based) and post-hoc.

Transparency [3] is one of the properties that can
enable interpretability. Transparency was a traditional first
step to protection of rights in human-based institutions
and by analogy it is ported to algorithmic concerns such as
unfairness and discrimination [20]. But, models in Al are
becoming much more complex than human-based
institutions and it becomes hard to find meaningful
explanation that users might be able to understand. Also,
human thinking, including our own, is not transparent to
us and justifications in the form of explanations and
interpretations may differ from the actual decision
mechanism. In addition, predictive performance and
transparency are conflicting objectives and they have to be
traded-off in a model [21], [22]. In [7] it is stated that it is
not clear how much transparency matters in the long run.
If the systems are robust and self-contained it may not be
necessary. But, if they are part of other systems, then
transparency can be good for debuggability.

Post-hoc interpretability extracts informations from
already learned model and it does not precisely depend on
how the model works. The advantage of this approach is
that it does not impact performance of the model which is
treated as a black-box (BB). This is similar mode to how
people make justifications for their own decisions, without
fully knowing the real functioning of their decision-
making mechanisms. However, special care must be taken
in order to avoid systems that generate plausible but
misleading explanations. Such explanations could satisfy
laws like GDPR, but there is a problem of checking their
veracity.
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Figure 1 Performance-transparency trade-off [18]

A. Integrated intepretability

The best explanation of a simple model is the model
itself, it perfectly represents itself and is easy to
understand [23]. This approach is limited to the model
families with lower complexity (flexibility), such as linear
models, decision trees and rules. On the other hand, other



model families such as artificial neural networks (ANN)
and support vector machines (SVM), boosted trees, and
random forests are considered opaque and their
complexity prevents users from tracing the logic behind
predictions. The latter are most often considered as black-
boxes and they are dealt with in a post-hoc manner. This
trade-off between transparency and performance is
conceptually depicted in Fig 1. The majority of work is
done for classification tasks. Different constraints can be
imposed on models in order to increase their
interpretability. Model size, sparsity, and monotonicity
([14], [18]) are some of the constraints used in the
literature. Even the choice of model family
(representation) can be considered a constraint on models
that affects the interpretability. Transparent models are
both interpretable and explainable.

User-based studies on interpretability of decision-
rules, tables, and tree algorithms in classification were
conducted in [24] and [25]. In the latter paper, decision
tables were found to be the easiest to use for
inexperienced users and that the model size in general has
negative impact on interpretability, answer time and
confidence. Freitas in [14] gives an overview of work in
comprehensible classification models where transparency
plays the major role. Interpretability of decision trees,
classification rules, decision tables, nearest neighbors, and
Bayesian network classifiers is discussed and
monotonicity constraints are advocated for improving the
model transparency.

There are two sub-approaches: pure transparent and
hybrid.

In pure transparent approaches we are restricted to use
model families that are considered transparent.
Evolutionary programming was used in [26] to search for
sets of interpretable classification rules with small number
of rules and conditions. Interpretable decision sets [27] are
sets of independent if-then rules. Since each rule can be
applied independently, interpretation is simple. The model
is found by optimizing objective that takes into account
both accuracy and interpretability. Oblique treed sparse
additive models, region-specific predictive models, were
proposed in [28]. They achieved competitive performance
with kernel SVMs while providing interpretable model.
Prototype selection [29] uses set covering optimization
problem to achieve sparsity in samples for classification.
Minimal set of prototypes is selected in order to get good
nearest neighbor classifier. It was tested on recognizing
handwritten digits and it showed reasonable performance.

Hybrid approaches combine transparent model
families with black-box methods in order to get
appropriate trade-off between the model interpretability
and the predictive performance. Combination of logistic
regression and SVMs was used for credit scoring in [30]
in order to improve accuracy of the initial interpretable
model. Multi-objective learning of hybrid classifiers was
utilized in [31] to learn hybrid trees where certain leafs
were substituted with black-box classifiers for boosting
accuracy at the expense of interpretability.

B Post-hoc methods

With  hardware improvements and increased
availability of data, predictive performance benefits of
using complex, opaque models are increased. However,
interpretability and explainability are issues that have to
be properly addressed. In these approaches we start with
trained black-box predictor and, sometimes, the used
training data. Some methods deal with interpretability
while others with explainability, according to the
definitions in section 2. Methods are model-agnostic if
they work only with the inputs and outputs of BB model,
and model-specific if they use idiosyncrasies of some
representation.

1) Interpretability

Transparent proxy model approach finds interpretable
model that globally approximates the predictions of the
black-box model. This approach offers both
interpretability and explainability. In [32] a model-specific
method was used to learn single decision tree from the
ensemble of decision trees. The learned model was more
accurate than the decision tree learned directly from the
data. Rules were extracted from SVM in [33] to make
more interpretable model for credit scoring.
Interpretability was gained at only a small loss in
performance compared to SVMs. Symbolic rules were
extracted from neural network ensembles in [34].
Bayesian regression mixture with multiple elastic nets was
proposed [35] and used on DNN, SVM, and random
forests to explain individual decisions and look for model
vulnerabilities in image recognition and text classification.
Model vulnerabilities were tested with adversarial
examples. Adversarial training scheme was used on DNNs
in order to increase their interpretability [36]. Using
adversarial examples, it was found that in normally trained
DNNs neurons do not detect semantic parts but only
discriminative part patches. Also, representations are not
robust codes of visual concepts. After adversarial training
scheme, representation is more interpretable, enabling to
trace the outcomes to influential neurons. This is more
transparent way of making predictions.

Indicative approaches give weaker notion of
interpretability to BB model than the above methods.
Some aspects of model functioning are elicited with
conceptual representations. Visualization techniques for
high-dimensional data like [37] can be used. In [38],
visualization technique based on trained deconvolutional
network was created for visualization of intermediate
layers of convolutional neural networks. The insights
through these visualizations enabled creation of improved
architectures that outperformed existing approaches at the
time. Similar was done for recurrent neural networks in
[39], where character-level language models were used as
an interpretable benchmark. Experiments revealed the
existence of interpretable cells that keep track of long-
range dependencies in text. Further work was done in [40]
on interpreting neural models in natural language
processing through visualization of unit’s salience.

Model-agnostic  visualization method based on
sensitivity analysis was proposed in [41]. Input effects on
model responses are inferred and visualizations of barplots
for feature importance and Variable Effect Characteristic
curves. The experiments were performed on neural



network ensemble and SVM models. Model-agnostic
method for auditing indirect influences in BB models was
presented in [42]. The procedure finds indirect influences
of attributes to output through related features, even when
attributes don’t have the direct influence. Tamagnini et al.
[43] created pedagogical visualization-based system
Rivelo for interpretation of BB classifiers using instance-
level explanations. User can interactively explore the set
of instance-level explanations to create a mental model.

2)  Explainability

These methods mostly output for each prediction also
an explanation in the form of feature importances for
making that decision. Layer-wise relevance propagation
and sensitivity analysis were presented in [16] to explain
predictions for deep learning models in the terms of input
variables. In [44], deep Taylor decomposition propagates
explanations from the outputs of DNN to the contributions
of its inputs. Model-agnostic method for capturing the
degree of influence of inputs on outputs of the system was
presented in [45]. Local approximation method, SHapley
Additive exPlanations (SHAP), was used in [23] to
explain prediction f(x) for a single input x. SHAP is a
unified framework for value estimation of additive feature
attributions that generalizes several works from the
literature [45]-[49]. Both model-agnostic and more
efficient model-specific variant were proposed. DNN that
identifies contents in the image and generates caption was
described in [50]. For each word in caption, an
explanation is generated in a form of highlighted relevant
regions of the input image.

Other methods give explanations in other forms, such
as visualization, text, examples, etc. DNNs were trained
for visual question answering and explaining human
activities in [51]. Justifications for decisions were given
textually and evidence in images was emphasized using
the attention mechanism. Textual explanations were
generated together with visual classification using DNN
[52]. Reinforcement learning based discriminative loss
function was used for explanation model.

IV. DISCUSSION

In the introduction we mentioned the utility of
abstracted explanations for finding useful properties and
generating hypotheses about data-generating processes
which is important for science as well as for future
Artificial General Intelligence (AGI) systems. Generated
hypotheses can be further reasoned and experimented
with, leading to the bootstrapped process of iterative
improvement. However, as the authors in [19] point out,
approaches listed in this paper only enable explanations of
decisions, instead of actually generating them. It is up to
the user to do the hypothesis generation, experimentation
and reasoning. Research direction interesting for science
and AGI is bridging neural-symbolic gap for seamless
integration of learning and reasoning [53], [54].
Successful implementation would enable automatic
generation of interpretations, explanations, and reasoning
over them.

We have also seen that researchers use different names
for similar or identical concepts. Definitions and
vocabulary should be fixed in the community in order to

enable easier transfer of results and information. Factors
of trust-inducing criteria should be formalized, since these
concepts are ambiguous and need to be split into smaller,
more specific constituents. Model framework of human
trust should be found, as an extension of work in [2]. This
can be done in a similar data-driven approach as proposed
in [15] for interpretability. There is a lack of empirical
studies on user-based measures of interpretability. Also,
richer loss functions need to be developed that take into
account more criteria of performance in the real world.
Most of the machine learning work has revolved around
the scalar objectives, while the problems we are talking
about are multicriteria with some criteria not even
explicitly given in the form of optimization objective.
Research into the extensions of interpretability research to
reinforcement learning is another potential venue.
Pedagogical interactive post-hoc approaches such as [43]
are promising to enable people create their mental models
of complex algorithms [20] which can boost trust by
increasing the familiarity with models’ decisions.

V. CONCLUSION

There are evident problems with the ethical- as well as
quality-of-life implications of using Al in their current
form in real-world scenarios. On several fronts, people are
yet to see major impact applications such as in judicial,
governmental, financial, and autonomous transport. But,
for some time already, human lives have been influenced
by algorithmic content recommendation which shapes
opinions and tastes. With a greater spread of Al
applications, trust-related problems are likely to become
more pressing issues. Trust is boosted with specific
criteria, but there are prominent problems with the
incompleteness in problem formalization. This is a barrier
to straightforward optimization approaches — some
notions are so complex, multidimensional, and ambiguous
that they are hard to put down in a formal way.
Interpretability and explainability offer abstracted
explanations for finding, checking, and reasoning over
useful properties. This can be used not only for verifying
trust criteria, but also for scientific discovery and in future
AGI systems.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436-444, May 2015.

[2] B. W. Israclsen, “T can assure you ... that it’s going to be all right’
-- A definition, case for, and survey of algorithmic assurances in
human-autonomy trust relationships,” ArXiv170800495 Cs Stat,
Aug.2017.

[31 Z. C. Lipton, “The Mythos of Model
ArXiv160603490 Cs Stat, Jun. 2016.

[4] T. T. Nguyen, P.-M. Hui, F. M. Harper, L. Terveen, and J. A.
Konstan, “Exploring the Filter Bubble: The Effect of Using
Recommender Systems on Content Diversity,” in Proceedings of
the 23rd International Conference on World Wide Web, New
York, NY, USA, 2014, pp. 677-686.

[5] R. Kumar, J. Sotelo, K. Kumar, A. de Brebisson, and Y. Bengio,
“ObamaNet: Photo-realistic lip-sync from text,” ArXivI80101442
Cs, Dec. 2017.

[6] A. Kucharski, “Study epidemiology of fake news,” Nature, vol.
540, p. 525, Dec. 2016.

[71 G. Marcus, “Deep Learning:
ArXiv180100631 Cs Stat, Jan. 2018.

Interpretability,”

A Critical  Appraisal,”



(8]

[

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

C. Szegedy et al., “Intriguing properties of neural networks,”
presented at the International Conference on Learning
Representations, 2014, pp. 1-10.

K. Crawford, “Opinion | Artificial Intelligence’s White Guy
Problem,” The New York Times, 25-Jun-2016.

T. Bolukbasi, K.-W. Chang, J. Y. Zou, V. Saligrama, and A. T.
Kalai, “Man is to Computer Programmer as Woman is to
Homemaker? Debiasing Word Embeddings,” in Advances in
Neural Information Processing Systems 29, Barcelona, Spain,
2016, pp. 4349-4357.

M. J. Wolf, K. Miller, and F. S. Grodzinsky, “Why We Should
Have Seen That Coming: Comments on Microsoft’s Tay
‘Experiment,” and Wider Implications,” SIGCAS Comput Soc,
vol. 47, no. 3, pp. 54-64, Sep. 2017.

B. Goodman and S. Flaxman, “European Union regulations on
algorithmic decision-making and a ‘right to explanation,””
ArXiv160608813 Cs Stat, Jun. 2016.

B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman,
“Building machines that learn and think like people,” Behav.
Brain Sci., vol. 40, ed 2017.

A. A. Freitas, “Comprehensible Classification Models: A Position
Paper,” SIGKDD Explor Newsl, vol. 15, no. 1, pp. 1-10, Mar.
2014.

F. Doshi-Velez and B. Kim, “Towards A Rigorous Science of
Interpretable Machine Learning,” ArXiv170208608 Cs Stat, Feb.
2017.

W. Samek, T. Wiegand, and K.-R. Miiller, “Explainable Artificial
Intelligence: Understanding, Visualizing and Interpreting Deep
Learning Models,” ITU J. ICT Discov. - Spec. Issue 1 - Impact
Artif. Intell. AI Commun. Netw. Serv., vol. 1, pp. 1-10, Dec.
2017.

G. Montavon, W. Samek, and K.-R. Miiller, “Methods for
interpreting and understanding deep neural networks,” Digit.
Signal Process., vol. 73, pp. 1-15, Feb. 2018.

D. Martens, J. Vanthienen, W. Verbeke, and B. Baesens,
“Performance of classification models from a user perspective,”
Decis. Support Syst., vol. 51, no. 4, pp. 782-793, Nov. 2011.

D. Doran, S. Schulz, and T. R. Besold, “What Does Explainable
Al Really Mean? A New Conceptualization of Perspectives,”
ArXiv171000794 Cs, Oct. 2017.

L. Edwards and M. Veale, “Slave to the Algorithm? Why a ‘Right
to an Explanation’ Is Probably Not the Remedy You Are Looking
For,” Social Science Research Network, Rochester, NY, SSRN
Scholarly Paper ID 2972855, May 2017.

Y. Jin and B. Sendhoff, “Pareto-Based Multiobjective Machine
Learning: An Overview and Case Studies,” IEEE Trans. Syst.
Man Cybern. Part C Appl. Rev., vol. 38, no. 3, pp. 397-415, May
2008.

A. A. Freitas, “A Critical Review of Multi-objective Optimization
in Data Mining: A Position Paper,” SIGKDD Explor Newsl, vol.
6, no. 2, pp. 77-86, Dec. 2004.

S. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting
Model Predictions,” ArXiv170507874 Cs Stat, May 2017.

H. Allahyari and N. Lavesson, “User-oriented Assessment of
Classification Model Understandability,” in DIVA, 2011.

J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, and B.
Baesens, “An empirical evaluation of the comprehensibility of
decision table, tree and rule based predictive models,” Decis.
Support Syst., vol. 51, no. 1, pp. 141-154, Apr. 2011.

A. Cano, A. Zafra, and S. Ventura, “An interpretable classification
rule mining algorithm,” Inf. Sci., vol. 240, pp. 1-20, Aug. 2013.

H. Lakkaraju, S. H. Bach, and J. Leskovec, “Interpretable
Decision Sets: A Joint Framework for Description and
Prediction,” in Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, New York, NY, USA, 2016, pp. 1675-1684.

J. Wang, R. Fujimaki, and Y. Motohashi, “Trading Interpretability
for Accuracy: Oblique Treed Sparse Additive Models,” in
Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, New York, NY, USA,
2015, pp. 1245-1254

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

B37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

J. Bien and R. Tibshirani, “Prototype selection for interpretable
classification,” Ann. Appl. Stat., vol. 5, no. 4, pp. 2403-2424,
Dec. 2011.

T. Van Gestel, B. Baesens, P. Van Dijcke, J. Suykens, J. Garcia,
and T. Alderweireld, “Linear and Non-linear Credit Scoring by
Combining Logistic Regression and Support Vector Machines,” J.
Credit Risk, vol. 1, Jan. 2005.

R. Piltaver, M. Lustrek, and M. Gams, “Multi-objective learning
of accurate and comprehensible classifiers —a case study,” 2014.

A. V. Assche and H. Blockeel, “Seeing the Forest Through the
Trees: Learning a Comprehensible Model from an Ensemble,” in
Machine Learning: ECML 2007, 2007, pp. 418-429.

D. Martens, B. Baesens, T. Van Gestel, and J. Vanthienen,
“Comprehensible credit scoring models using rule extraction from
support vector machines,” Eur. J. Oper. Res., vol. 183, no. 3, pp.
1466-1476, Dec. 2007.

Z.-H. Zhou, Y. Jiang, and S.-F. Chen, “Extracting symbolic rules
from trained neural network ensembles,” Al Commun., vol. 16,
no. 1, pp. 3-15, Jan. 2003.

W. Guo, K. Zhang, L. Lin, S. Huang, and X. Xing, “Towards
Interrogating  Discriminative  Machine Learning Models,”
ArXiv170508564 Cs Stat, May 2017.

Y. Dong, H. Su, J. Zhu, and F. Bao, “Towards Interpretable Deep
Neural Networks by Leveraging Adversarial Examples,”
ArXiv170805493 Cs, Aug. 2017.

L. van der Maaten and G. Hinton, “Visualizing Data using t-
SNE,” J. Mach. Learn. Res., vol. 9, no. Nov, pp. 2579-2605,
2008.

M. D. Zeiler and R. Fergus, “Visualizing and Understanding
Convolutional Networks,” in Computer Vision — ECCV 2014,
2014, pp. 818-833.

A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and
Understanding Recurrent Networks,” ArXiv150602078 Cs, Jun.
2015.

J. Li, X. Chen, E. Hovy, and D. Jurafsky, “Visualizing and
Understanding Neural Models in NLP,” in Proceedings of the
2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, 2016, pp. 681-691.

P. Cortez and M. J. Embrechts, “Using sensitivity analysis and
visualization techniques to open black box data mining models,”
Inf. Sci., vol. 225, pp. 1-17, Mar. 2013.

P. Adler et al, “Auditing Black-box Models for Indirect
Influence,” Knowl Inf Syst, vol. 54, no. 1, pp. 95-122, Jan. 2018.

P. Tamagnini, J. Krause, A. Dasgupta, and E. Bertini,
“Interpreting Black-Box Classifiers Using Instance-Level Visual
Explanations,” in Proceedings of the 2Nd Workshop on Human-
In-the-Loop Data Analytics, New York, NY, USA, 2017, p. 6:1-
6:6.

G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R.
Miiller, “Explaining nonlinear classification decisions with deep
Taylor decomposition,” Pattern Recognit., vol. 65, pp. 211-222,
May 2017.

A. Datta, S. Sen, and Y. Zick, “Algorithmic Transparency via
Quantitative Input Influence: Theory and Experiments with
Learning Systems,” in 2016 TEEE Symposium on Security and
Privacy (SP), 2016, pp. 598-617.

M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why Should T Trust
You?’: Explaining the Predictions of Any Classifier,” in
Proceedings of the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, New York, NY, USA,
2016, pp. 1135-1144

A. Shrikumar, P. Greenside, and A. Kundaje, “Learning Important
Features Through  Propagating  Activation  Differences,”
ArXiv170402685 Cs, Apr. 2017.

E. Strumbelj and T. Kononenko, “Explaining Prediction Models
and Individual Predictions with Feature Contributions,” Knowl Inf
Syst, vol. 41, no. 3, pp. 647-665, Dec. 2014.

S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Miiller, and
W. Samek, “On Pixel-Wise Explanations for Non-Linear

Classifier Decisions by Layer-Wise Relevance Propagation,”
PLOS ONE, vol. 10, no. 7, p. €0130140, Jul. 2015.



[50]

[51]

[52]

[53]

[54]

K. Xu et al., “Show, Attend and Tell: Neural Image Caption
Generation with Visual Attention,” in International Conference on
Machine Learning, 2015, pp. 2048-2057.

D. H. Park, L. A. Hendricks, Z. Akata, B. Schiele, T. Darrell, and
M. Rohrbach, “Attentive Explanations: Justifying Decisions and
Pointing to the Evidence,” ArXiv161204757 Cs, Dec. 2016.

L. A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele,
and T. Darrell, “Generating Visual Explanations,” in Computer
Vision — ECCV 2016, 2016, pp. 3-19.

T. R. Besold and K.-U. Kiihnberger, “Towards integrated neural—
symbolic systems for human-level Al: Two research programs
helping to bridge the gaps,” Biol. Inspired Cogn. Archit., vol. 14,
pp. 97-110, Oct. 2015.

T. R. Besold et al., “Neural-Symbolic Learning and Reasoning: A
Survey and Interpretation,” ArXiv171103902 Cs, Nov. 2017.



